MATHEMATICS

DPP No. 57

Total Marks: 58

Max. Time: 63 min.

Topics: Parabola, Ellipse, Hyperbola

Type of Questions		M.M.	, Min.
Single choice Objective (no negative marking) Q.1 to 6	(3 marks, 3 min.)	[18,	18]
Multiple choice objective (no negative marking) Q.7, 8	(5 marks, 4 min.)	[10,	8]
True or False (no negative marking) Q.9	(2 marks, 2 min.)	[2,	2]
Subjective Questions (no negative marking) Q.10 to Q.14	(4 marks, 5 min.)	[20,	25]
Match the Following (no negative marking) Q.15	(8 marks, 8 min.)	[8,	8]

- 1. The locus of the midpoint of the line segment joining the focus to a moving point on the parabola y^2 = 4ax is another parabola with directrix
 - (A) x = -a
- (B) $x = \frac{a}{2}$ (C) $x = -\frac{a}{2}$ (D) x = 0
- A tangent at any point on the ellipse $4x^2 + 9y^2 = 36$ is cut by the tangent at the extremities of the major 2. axis at T and T'. The circle on TT' as diameter passes through the point
 - (A) $(0, \sqrt{5})$
- (B) $(\sqrt{5}, 0)$
- (C) (2, 1)
- (D) $(0, -\sqrt{5})$
- 3. Area of the triangle formed by the tangents at the points (4, 6), (10, 8) and (2, 4) on the parabola $y^2 - 2x = 8y - 20$, is (in sq. units)
 - (A) 4
- (B) 2
- (C) 1
- (D) 8
- Tangents are drawn from the points on the line x y 5 = 0 to $x^2 + 4y^2 = 4$, then all the chords of contact 4. pass through a fixed point, whose co-ordinates are

 - (A) $\left(\frac{1}{5}, \frac{4}{5}\right)$ (B) $\left(\frac{4}{5}, -\frac{1}{5}\right)$ (C) $\left(\frac{2}{5}, \frac{2}{5}\right)$
- (D) (5, 0)
- The point of intersection of tangents drawn to the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ at the points where it is 5. intersected by the line $\ell x + my + n = 0$, is
- $(A)\left(\frac{-a^2\ell}{n},\frac{b^2m}{n}\right) \qquad (B)\left(\frac{-a^2\ell}{m},\frac{b^2n}{m}\right) \qquad (C)\left(\frac{a^2\ell}{m},\frac{-b^2n}{m}\right) \qquad (D)\left(\frac{a^2\ell}{m},\frac{b^2n}{m}\right)$
- Let C be the centre, BCB' the minor axis and S the focus (ae, 0) of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. B'S is 6. produced to meet the ellipse again in the point P. If CP makes an angle ϕ with the positive direction of x-axis then tan ϕ is equal to

- (A) $\frac{(1-e^2)^{3/2}}{e}$ (B) $\frac{(1-e^2)^{3/2}}{2e}$ (C) $\frac{(1-e^2)^{1/2}}{2}$

- The point P on the ellipse $4x^2 + 9y^2 = 36$ is such that the area of the $\Delta PF_1F_2 = \sqrt{10}$ where F_1 , F_2 are 7. foci. Then P has the coordinates

- (A) $\left(\frac{3}{\sqrt{2}}, \sqrt{2}\right)$ (B) $\left(\frac{3}{2}, 2\right)$ (C) $\left(-\frac{3}{2}, -2\right)$ (D) $\left(-\frac{3}{\sqrt{2}}, -\sqrt{2}\right)$
- 8. For the hyperbola, xy - 4x - 2y = 0, which of the following is/are true?
 - (A) Asymptotes are x = 2 and y = 4.
 - (B) equation of transverse axis and conjugate axis are x + y 6 = 0 and x y + 2 = 0 respectively.
 - (C) length of transverse axis = length of conjugate axis = 8
 - (D) eccentricity of its conjugate hyperbola is $\frac{3}{2}$
- 9. Consider the following statements:
 - If x + y = k is a normal to $y^2 = 12x$, then k = 9
 - The centre of ellipse $4x^2 + 9y^2 16x 54y + 61 = 0$ is (2, 3)
 - Co-normal points of ellipse lies on a circle.

State, in order, whether S_1 , S_2 , S_3 are true or false

- (A) TTF
- (B) TFT
- (C) FTT
- (D) TTT
- Tangents are drawn from any point on the hyperbola $\frac{x^2}{9} \frac{y^2}{4} = 1$ to the circle $x^2 + y^2 = 9$. Find the locus 10. of mid-point of the chord of contact.
- 11. Two tangents to the parabola $y^2 = 8x$ meet the tangent at its vertex in the points P and Q. If PQ = 4 units, find the locus of the point of intersection of the two tangents.
- Find the locus of the middle points of the chords of contact of tangents to the hyperbola $x^2 y^2 = a^2$ 12. from the points on its auxiliary circle.
- Find the equation of common tangents to the hyperbolas $x^2 y^2 = 18$ and xy = 12. 13.
- The foci of a hyperbola coincide with the foci of the ellipse $\frac{x^2}{25} + \frac{y^2}{9} = 1$. Find the equation of the 14. hyperbola if its eccentricity is 2.
- 15. Match the column

Column - I Column - II

- (A) Tangents are drawn to the parabola $y^2 = 4x$ from (4, 4). If the normals (p) drawn at the point of contact passes through (14, -k), then k is
- If tangents from (λ ,3) to the ellipse $\frac{x^2}{\Omega} + \frac{y^2}{4} = 1$ are at right angles then λ is (B) (q) 2
- (C) Number of solutions of $\cos x + 2 \sin x = 1$ in $[0, 2\pi]$ is 16 (r)
- (D) If normals at P and Q on the parabola $y^2 = x$ meet at (16, 4) on the -2 (s)

parabola then $\frac{PQ^2}{119}$ is

3

Answers Key

1. D **2.** B **3.** B **4.** B

5. A **6**. B **7**. AD **8**. AC

9. A **10.**
$$\frac{x^2}{9} - \frac{y^2}{4} = \left(\frac{x^2 + y^2}{9}\right)^2$$
 11. $y^2 = 8(x + 2)$]

12.
$$a^2 (x^2 + y^2) = (x^2 - y^2)^2$$
 13. $3x + y \pm 12 = 0$

13.
$$3x + y \pm 12 = 0$$

14.
$$3x^2 - y^2 - 12 = 0$$

15. (A)
$$\rightarrow$$
 r, (B) \rightarrow q, s, (C) \rightarrow p (D) \rightarrow q

